

Prioritising leak repair: Using acoustic sensors to determine leak flow rate

Joseph Butterfield* – Innovation Manager Valentin Burtea – Technology Fellow Bruce Robertson – Senior R&D Field Engineer

*jbutterfield@muellerwp.com

4 Pillars of Real (Physical) Losses

Acoustics 101

Using sound to detect anomalies on Water Networks

Leak detection principles

- Leaks generate acoustic noise
- Pipes are good acoustic wave guides
- Axisymmetric acoustic waves can propagate over a long distance
- Can be detected using hydrophones (sound pressure) or accelerometers (vibration)

Change in Sound Pressure

Sound propagation model

Effect of pipe material

Correlation Leak Detection

- Bracket a pipe segment with two sensors
- Leak sound propagates through the pipe reaching the two sensors
- Cross-correlation extracts the similar sound (leak) and removes ambient noise
- High processing gain: can extract signals below the noise floor
- Locate leaks by measuring the time delay between recorded acoustic waves

Leak location

$$d_1 = \frac{d - ct_d}{2}$$

$$d_1 = distance \ to \ leak$$

d = *distance between sensors*

c = Pipe wavespeed

$$t_d = Time \ delay$$

Sensors for leak flow rate estimation

EchoShore[®]-**DX**

Dx-e

Why prioritise leak repair based on leak size?

- Reduce water loss quicker
- Repair less leaks to achieve higher reductions
- Reducing leak run times saves water
- Achieve operational/regulatory targets faster
- Reduce CAPEX/OPEX associated with leak repair
- Minimise environmental impacts

Number of leaks fixed

Challenges estimating flow-rate using acoustics

- Leak acoustics depends on several factors
- Large diversity of leaks
- Key factors are unknown (i.e. pressure) and they vary in time
- Ground truth: flow-rate of an exposed pipe is different than a buried pipe
- Flow-rate influences the sound level at the source, but we can measure only at access points far, away form the leak

Methodology

Experiments to determine how variables influence acoustic signal generated by leaks

Solution:

Twin model to estimate the sound at the source

Controlled experiments to relate sound levels with flow-rate

Data calibration using multiple leak observations

Twin Model: a simulation of pipe network acoustic

The estimated sound level is the one for which the model matches the real system.

Controlled Experiments

Controlled Experiments

Leaks of different areas and shapes :

- Round holes
- Longitudinal slits
- Circumferential slits

Different medium conditions :

- Flowing in air
- Flowing in water
- Flowing in gravel
- Flowing through multiple layers of fabric
- Flowing through gravel in water

Pressure range: 50 to 70 psi Sound level variation < 20%

Sound level vs. Leak Flow-rate

- Flow-rate is proportional to the RMS of sound power at the source
- Empirical data collected on a 6" DI pipe at constant pressure of 50 psi
- Relationship is valid as long as the system can maintain a certain pressure in the pipe.
- At low pressure, flow becomes laminar sound level drops significantly

Normalized RMS

MUELLER

Sound level vs. Leak Flow-rate

Flow-rate vs RMS remains proportional for different surrounding mediums or leak shapes

Normalized RMS

MUELLER

Calibration using field data

- Calibration was performed using several leaks detected by an acoustic leak detection system
- All leaks are on mains, in-bracket
- The leak location was determined using correlation and confirmed by utilities
- The flow-rate was measured and reported by the utility repair crew

Estimated Flow Rate (gpm)

Reported Leak now

Evaluation

- Evaluated with a network of acoustic sensors installed at multiple utilities in North America
- The system monitored metallic pipes (CI & DI) with diameters ranging between 6" to 16"
- All events have been detected and located acoustically and reported to utilities
- Water utilities provided feedback on observed flow-rate following site inspection
- Leakage events included main breaks, service leaks and hydrant leaks
- Accurately estimated the flow rate for 256 leaks out of 327 (hit rate = 78%)

LEAK SIZE PERFORMANCE

MUELLER

Key Takeaways

Acoustic Leak Monitoring systems with flow rate estimator

- ✓ Factors influencing leak signal investigated
- ✓ Acoustic features identified to enable estimation of leak flow rate
- $\checkmark\,$ Twin model approach used to estimate the leak signal at the source
- $\checkmark\,$ System tested at scale
- ✓ Prioritise leak repair (save more water by fixing less leaks)

100